What No One Tells You About: Customer Journey Mapping Can Be Paired With Process Intelligence

As researchers, Gaël Bernard and Periklis Andritsos have put it in their paper A Process Mining Based Model for Customer Journey Mapping: customer journey maps (CJMs) are used to understand customers’ behavior, and ultimately to better serve them and make their experience better. This new approach is using numerous disciplines for different purposes. As a response to this growing need to understand the customer journey, dozens of software applications have emerged. Although these provide interfaces to understand CJMs, they lack measures to assist in any type of in depth analyze and lack in providing any valuable insight for decision making. There could be some potential by utilizing CJM software data with process intelligence software to dig deeper into the customer’s journey through process mining, a data analytics technique that users can leverage to assess the impact of the journey’s duration on the customer experience. This approach would bring data scientists and customer journey planners closer together, the first step in gaining a better understanding of customer behavior. In this sense organizations could discover, analyze, and further monitor their customers’ journeys.

TimelinePI is a new type of analytics focused on the analysis of event sequences which comprise timelines. Through the refinement of the built-in analysis tools a user can quickly realize insights regarding the general patterns regarding subset groups comprising the overall population of timelines. Beyond the patterns discoverable from the timelines events themselves, users can further enrich the analysis to look for correlations between various patterns as well as other related data that can be joined to the timeline.

Harvard Business Review has an excellent article: Using Customer Journey Maps to Improve Customer Experience. Here is an extract below that is really helpful for understanding what should be evaluated along the customer journey:

  • Actions: What is the customer doing at each stage? What actions are they taking to move themselves on to the next stage?
  • Motivations: Why is the customer motivated to keep going to the next stage? What emotions are they feeling? Why do they care?
  • Questions: What are the uncertainties or other issues preventing the customer from moving to the next stage? As you can from the diagram above, home theater has a larger proportion of questions than almost anything else at each stage, which indicates this is an area that manufacturers and retailers should be attacking aggressively.
  • Barriers: What structural, process, cost, implementation, or other barriers stand in the way of moving on to the next stage?

Process intelligence provides users a set of tools that support multiple ways to discover, analyze, monitor, and improve processes based on real event logs. Its main idea is to provide a link between process models (e.g., BPMN) and the “reality” captured in event logs. Furthermore, TimelinePI’s Timeline Analysis analytics engine delivers critical process intelligence insights automatically – any process, any complexity and any size. The result is the only analytics tool that allows users to analyze the data already in the CJM system in a completely new way. By using data left behind through the customer journey, TimelinePI automatically creates an interactive model and generates a wide variety of analyses. The result is getting immediate access to process insights and knowledge about the customer journey not possible with any other tools.

Many organizations have adopted the concept of Customer Journey Mapping in order to map out the customer’s experience and analyze it. This starts from the initial contact with the company through the steps of engagement and finally into a long term relationship. These techniques are frequently applied to analyze the “onboarding” of customers, areas where customers might first look up information on the web, rely on word-of-mouth, check out the org’s mobile app, make some calls or visit branches, before committing to a particular purchase of a product of service. With all these backend systems growing the complexity on how to map this process businesses are left thinking: “How can we cover the entire customer life cycle?” TimelinePI allows users to combine event data from multiple systems. It then reconstructs processes even when different steps of the process are performed using multiple back-end systems. The result is the ability to visualize and analyze the complete customer journey, even when there is no other place to find these details in existing systems.

With the growing complexity of customers’ needs, advances in statistical analysis and algorithms, and by expanding the amount of data produced provides an exciting opportunity for organizations to advance their knowledge of their customers’ journeys with empirical tools like TimelinePI.

Learn more about Customer Journey Mapping with Process Intelligence in an article that first appeared in Data Science Briefings, the DataMiningApps newsletter : An Introduction to Customer Journey Analytics

About the author

Ryan Raiker is an accomplished business consultant with experience working with small and medium enterprises. Ryan has worked in project management in State, and Local government. He studied Business Analytics and later earned his MBA from Widener University in Chester, Pennsylvania. Currently Ryan is focusing on Brand Management and Product Development for TimelinePI.